Master internship offer:
Eliminating clocks
from X10 Polyhedral Programs

1 Internship supervisor and host laboratory

Supervisor : Eric Violard

E-mail : Eric.Violard@inria.fr

Phone : (+33) 03 68 85 02 43
http://icube-icps.unistra.fr/index.php/Eric_Violard

ICube Laboratory - Team ICPS (Parallel and Scientific Computing)
300 bd Sébastien Brant - BP 10413 - F-67412 Illkirch Cedex
http://icube-icps.unistra.fr

2 Context

This work is related to parallel programming languages and program trans-
formations and is set in a collaboration between some people (including Paul
Feautrier, Alain Ketterlin and Eric Violard) which are members of two INRIA
teams (CAMUS and COMPSYS). These two teams are interested in develop-
ing parallelizing and optimizing techniques, as well as proof and certification
methods, for the efficient use of parallel architectures.

This project is particularly concerned with optimizing X10 programs. The
X10 language [3] is a promising recent parallel language, developed by IBM
Research and designed specifically to address the challenges of productively pro-
gramming a wide variety of target platforms including complex hardware systems
such as clusters of multi-core CPUs and accelerators. The sequential core of X10
is an object-oriented language in the Java family. This core is augmented by a few
parallel constructs that create activities and synchronize them. Like many other
parallel languages, these constructs are redundant and may be used interchange-
ably in some circumstances, allowing a programmer to choose amongst several
program shapes or viewpoints. In particular, synchronization can be achieved
by using clocks which can be seen as a generalization of the classical barriers.
Synchronization on a clock is specified by the advance () method call. Activities
that execute advances stall until all extent activities have done the same, and
then are released at the same (logical) date.

We recently introduced a program transformation which is applicable to
a large class of parallel programs (which are called ”"polyhedral programs”).
This systematic transformation is able to switch between two extreme program


mailto:Eric.Violard@inria.fr
http://icube-icps.unistra.fr/index.php/Eric_Violard
http://icube-icps.unistra.fr

shapes: — a parallel composition of sequential activities that synchronizes us-
ing clocks ; — a sequence of parallel unclocked activities. Obviously, these two
extreme cases can be combined to produce many intermediate solutions. Such
an ability opens up a large space of new potential optimizations, extending the
scope of automatic parallelization.

Ezxample 1. To understand the idea of this transformation, consider Figure 1:
the center graph depicts the execution of an imaginary X10 program, where ac-
tivities are represented by vertical red boxes that contain a sequence of normal
instructions (denoted by 8) and clock synchronization operations. These activi-
ties ”align” on their calls to advance (). The code on the left side of the figure
is one possible source of this program. The idea of the transformation is to ex-
tract ”slices” (or phases) across activities, represented by horizontal boxes on
the graph. A possible corresponding program appears on the right of the figure:
the usage of clocks has been replaced by the barrier ending finish blocks. Both
programs have exactly the same behavior, except for clocks and the number (and
duration) of activities.

clocked finish { s s[5+ for(jino0..3)
L. L2 |2 4 -2 . L |
for(i in 0..2) J adv| |adv| |adv | finish |
clocked async - TS TS 18 : for(i in 0..2) |
for(j in 0..3) {| J |agv] |adv| |ady] | async S; !
S5 s Ts[1s ] - ‘

advance(); adv|_|adv| |adv]

¥ s s s

adv| |adv| |adv

Fig. 1. Parallelism and synchronization in X10, with and without clocks

This transformation is based on the polytope model [2] which is particularly
used to model program control. Polyhedral operations are used to manipulate
the program.

3 Objective

The objective of this project is to implement this source-to-source transformation
for the X10 language and in the simplest case where all dates are affine index
expressions. (A further goal is to include this transformation in a compiler within
either static or dynamic optimizations). The student will have to :

— Study the polyhedral X10 programs class and the algorithm for transforming
them



— Use some existing libraries for modeling programs and applying polyhedral
operations (CLooG [1J, ISL [4])

— Manipulate an AST (Abstract Syntax Tree) corresponding to an X10 pro-
gram: extract and then gather the required syntactic elements

— Code the algorithm : compute the date symbolic expressions, build a new
AST and produce a new X10 program written in concrete syntax.

References

1. C. Bastoul. Code generation in the polyhedral model is easier than you think. In
PACT’13 IEEE International Conference on Parallel Architecture and Compilation
Techniques, pages 7-16, Juan-les-Pins, september 2004.

2. Paul Feautrier and Christian Lengauer. The polyhedral model. In David Padua,
editor, Encyclopedia of Parallel Programming. Springer, 2011.

3. Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David Grove.
X10 language specification version 2.2, March 2012. http://x10.sourceforge.
net/documentation/languagespec/x10-latest.pdfl

4. S. Verdoolaege. isl: An integer set library for the polyhedral model. Mathematical
Software—ICMS 2010, pages 299-302, 2010.


http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf

	Master internship offer:  Eliminating clocks  from X10 Polyhedral Programs

